KERALA TECHNOLOGICAL UNIVERSITY

Curriculum for Semesters I and II

2015

Kerala Technological University
CET Campus, Thiruvananthapuram
Kerala -695016 India
Phone +91 471 2598122, 2598422
Fax +914712598522
Web: ktu.edu.in
Email: university@ktu.edu.in

SEMESTER I

Slot	Course No.	Subject	L-T-P	Hours	Credits
A	MA101	Calculus	3-1-0	4	4
$\begin{gathered} \text { B } \\ (\mathbf{1 / 2}) \end{gathered}$	PH100	Engineering Physics	3-1-0	4	4
	CY100	Engineering Chemistry	3-1-0	4	4
$\begin{gathered} \text { C } \\ (\mathbf{1} / \mathbf{2}) \end{gathered}$	BE100	Engineering Mechanics	3-1-0	4	4
	BE110	Engineering Graphics	1-1-2	4	3
D	BE101-0X	Introduction to ___ Engineering	2-1-0	3	3
E	BE103	Introduction to Sustainable Engineering	2-0-1	3	3
F (1/4)	CE100	Basics of Civil Engineering	2-1-0	3	3
	ME100	Basics of Mechanical Engineering	2-1-0	3	3
	EE100	Basics of Electrical Engineering	2-1-0	3	3
	EC100	Basics of Electronics Engineering	2-1-0	3	3
$\begin{gathered} S \\ (\mathbf{1} / \mathbf{2}) \end{gathered}$	PH110	Engineering Physics Lab	0-0-2	2	1
	CY110	Engineering Chemistry Lab	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ (\mathbf{2} / \mathbf{4}) \end{gathered}$	CE110/ME110/ EE110/EC110/ CS110/CH110	Basic Engineering Workshops (CS110 for CS and related branches and CH110 for CH and related branches only)	$\begin{gathered} 0-0-2 \\ + \\ 0-0-2 \end{gathered}$	2 2	1 1
U		U100 Language lab/ Bridge courses/ Remedial programmes/Micro Projects etc	0-0-3	3	
				30	24/23
V		V100 Entrepreneurship/TBI/NCC/NSS/ Physical Edn. etc	0-0-2	2	Activity points

Notes:

1. Basic Engineering course of the parent branch included as Introduction to
\qquad Engineering. (3 credits)

List of Courses offered under BE 101-0X and Branches associated with each course

1. BE101-01 Introduction to Civil Engineering Civil Engineering
2. BE101-02 Introduction to Mechanical Engineering Sciences

Aeronautical Engineering, Automobile Engineering, Food Technology, Industrial Engineering, Marine Engineering, Mechanical Engineering, Mechanical Engineering (Automobile), Mechanical Engineering (Industry Integrated), Mechanical Engineering (Production), Mechatronics, Metallurgy, Naval Architecture \& Ship Building Engineering, Printing Technology, Production Engineering, Textile Technology.
3. BE101-03 Introduction to Electrical Engineering

Electrical \& Electronics Engineering, Electrical Engineering
4. BE101-04 Introduction to Electronics Engineering

Applied Electronics \& Instrumentation Engineering, Biomedical Engineering, Electronics \& Biomedical Engineering, Electronics, Electronics \& Communication Engineering, Electronics \& Communication Engineering (Industry Integrated), Electronics Engineering, Electronics \& Instrumentation Engineering, Instrumentation \& Control Engineering, Instrumentation Technology.
5. BE101-05 Introduction to Computing and Problem Solving Computer Engineering, Computer Science \& Engineering, Information Technology. 6. BE101-06 Introduction to Chemical Engineering Biotechnology, Biotechnology \& Biochemical Engineering, Chemical Engineering. 2. Institutions can recommend one of four other Basic Engineering courses offered during this semester for every branch. However, the basic course selected should exclude the one corresponding to their branch of specialization. eg. Student who took Introduction to Civil Engineering should not take Basics of Civil Engineering; student who took Introduction to Electrical Engineering should not take Basics of Electrical Engineering
3. The six basic engineering workshops will be connected with the Introductory or Basics of Engineering courses offered. The students should attend two workshops in Semester 1 and two in Semester 2.

For example, students opting Introduction to Civil Engineering or Basics of Civil Engineering should attend the Civil Engineering Workshop, students opting Introduction to Mechanical Engineering or Basics of Mechanical Engineering should attend the Mechanical Engineering Workshop, students opting Introduction to Chemical Engineering should attend the Chemical Engineering Workshop and students opting Introduction to Computing and Problem Solving_should attend the Computer Science Workshop etc. In addition, the students should attend one more workshop course in Semester 1, corresponding to the other Basic Engineering course they had been assigned by the institution. The workshop courses corresponding to both introductory and basic courses are same. However, the institutions may allot exercises or experiments listed in the syllabus based on the contents of corresponding theory course.
4. Engineering Physics and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the institution to opt for Engineering Physics in S1 and Engineering Chemistry in S2 and vice versa. Students opting for Engineering Physics in S1 should attend Engineering Physics Lab in S1 and students opting for Engineering Chemistry in S1 should opt for Engineering Chemistry Lab in S1.
5. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of number of branches in the institution to opt for Engineering Mechanics in Semester 1 and Engineering Graphics in Semester 2 and vice versa.
6. It may be noted that for items 4 and 5 above, all students belonging to a particular branch of study must be assigned the same course during one semester. For example, all students belonging to Electrical and Electronics Engineering in an institution may be assigned Engineering Physics and Engineering Physics lab, while all students in Electronics and Communication Engineering branch may be assigned Engineering Chemistry and Chemistry lab. Likewise, all students in Civil Engineering branch may be assigned Engineering Graphics, while all students in Mechanical Engineering branch may be allotted the Engineering Mechanics in Semester 1 and vice versa in Semester 2.
7. For Course U, the Institutions should conduct diagnostic tests to identify the training requirements of each student and advise them to attend the suitable programme. The students who excel in all diagnostic tests can be assigned Micro projects under the guidance of faculty members.
8. Course \mathbf{V} is for earning activity points, the details are covered in rules and regulations of KTU.

SEMESTER II

Slot	Course No.	Subject	L-T-P	Hours	Credits
A	MA102	Differential Equations	3-1-0	4	4
$\begin{gathered} \text { B } \\ (\mathbf{1 / 2}) \end{gathered}$	PH100	Engineering Physics	3-1-0	4	4
	CY100	Engineering Chemistry	3-1-0	4	4
$\begin{gathered} \text { C } \\ (\mathbf{1} / \mathbf{2}) \end{gathered}$	BE100	Engineering Mechanics	3-1-0	4	4
	BE110	Engineering Graphics	1-1-2	4	3
D	BE102	Design \& Engineering	2-0-2	4	3
$\mathrm{E}, \mathrm{~F}$$(2 / 4)$	CE 100	Basics of Civil Engineering	2-1-0	3	3
	ME 100	Basics of Mechanical Engineering	2-1-0	3	3
	EE 100	Basics of Electrical Engineering	2-1-0	3	3
	EC 100	Basics of Electronics Engineering	2-1-0	3	3
$\begin{gathered} S \\ (\mathbf{1} / \mathbf{2}) \end{gathered}$	PH110	Engineering Physics Lab	0-0-2	2	1
	CY110	Engineering Chemistry Lab	0-0-2	2	1
$\begin{gathered} \mathrm{T} \\ (\mathbf{2} / \mathbf{4}) \end{gathered}$	CE110/ME110/ EE110/EC110	Basic Engineering Workshops	$\begin{gathered} 0-0-2 \\ + \\ 0-0-2 \end{gathered}$	2 2	1 1
U		U100 Language lab / Bridge courses/ Remedial programmes/Micro Projects etc	0-0-2	2	
				30	24/23
V		V100 Entrepreneurship /TBI/NCC/NSS/ Physical Edn. etc	0-0-2	2	Activity points

Note: 1. Institutions can assign two of four Basics of Engineering courses not already taken by the student in the previous semester and the corresponding Workshop courses in Semester 2.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Curriculum

for

B.Tech Degree Semesters III to VIII

2016

Computer Science and Engineering

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
CET CAMPUS, THIRUVANANTHAPURAM - 695016
KERALA, INDIA
Phone +91 471 2598122, 2598422
Fax +914712598522 Web: ktu.edu.in
Email: university@ktu.edu.in

branch: Computer Science \& Engineering

SEMESTER - 3

Course Code	Course Name	L-T-P	Credits	Exam Slot
MA201	Linear Algebra \& Complex Analysis	$3-1-0$	4	A
CS201	Discrete Computational Structures	$3-1-0$	4	B
CS203	Switching Theory and Logic Design	$3-1-0$	4	C
CS205	Data Structures	$3-1-0$	4	D
CS207	Electronics Devices \& Circuits	$3-0-0$	3	E
HS210/ HS200	Life Skills/Business Economics	$2-0-2 /$ $3-0-0$	3	F
CS231	Data Structures Lab	$0-0-3$	1	S
CS233	Electronics Circuits Lab	$0-0-3$	1	T

Total Credits $\mathbf{=} 24$
Hours: 28/29
Cumulative Credits= 71

SEMESTER - 4

Course Code	Course Name	L-T-P	Credits	Exam Slot
MA202	Probability Distributions, Transforms and Numerical Methods	$3-1-0$	4	A
CS202	Computer Organization and Architecture	$3-1-0$	4	B
CS204	Operating Systems	$3-1-0$	4	C
CS206	Object Oriented Design and Programming	$2-1-0$	3	D
CS208	Principles of Database Design	$2-1-0$	3	E
HS210/ HS200	Life Skills/Business Economics	$2-0-2 /$ $3-0-0$	3	F
CS232	Free and Open Source Software Lab	$0-0-3$	1	S
CS234	Digital Systems Lab	$0-0-3$	1	T

Total Credits $=\mathbf{2 3}$
Hours 28/27
Cumulative Credits= 94
branch: Computer Science \& Engineering
SEMESTER - 5

Course Code	Course Name	L-T-P	Credits	Exam Slot
CS301	Theory of Computation	$3-1-0$	4	A
CS303	System Software	$2-1-0$	3	B
CS305	Microprocessors and Microcontrollers	$2-1-0$	3	C
CS307	Data Communication	$3-0-0$	3	D
CS309	Graph Theory and Combinatorics	$2-0-2$	3	E
ES341	Design Project	$0-0-0$	3	F
CS331	System Software Lab	$0-1-2$	2	S
CS333	Application Software Development Lab	$0-0-3$	1	U
Total Credis 23	T			

Total Credits $=\mathbf{2 3}$
Hours: 29 Cumulative Credits= 117

Elective 1:- 1. CS361 Soft Computing
2. CS363 Signals and Systems
3. CS365 Optimization Techniques
4. CS367 Logic for Computer Science
5. CS369 Digital System Testing \& Testable Design
branch: Computer Science \& Engineering
SEMESTER - 6

Course Code	Course Name	L-T-P	Credits	Exam Slot
CS302	Design and Analysis of Algorithms	$3-1-0$	4	A
CS304	Compiler Design	$3-0-0$	3	B
CS306	Computer Networks	$3-0-0$	3	C
CS308	Software Engineering and Project Management	$3-0-0$	3	D
HS300	Principles of Management	$3-0-0$	3	E
CS332	Microprocessor Lab	$3-0-0$	3	F
CS334	Network Programming Lab	$0-0-3$	1	S
CS352	Comprehensive Exam	$0-1-1$	2	U

Total Credits $\mathbf{= 2 3} \quad$ Hours: $\mathbf{2 7} \quad E 5$ Cumulative Credits= $\mathbf{1 4 0}$

Elective 2:-

1. CS362 Computer Vision
2. CS364 Mobile Computing
3. CS366 Natural Language Processing
4. CS368 Web Technologies
5. CS372 High Performance Computing
branch: Computer Science \& Engineering
SEMESTER-7

Course Code	Course Name	L-T-P	Credits	Exam Slot
CS401	Computer Graphics	$4-0-0$	4	A
CS403	Programming Paradigms	$3-0-0$	3	B
CS405	Computer System Architecture	$3-0-0$	3	C
CS407	Distributed Computing	$3-0-0$	3	D
CS409	Cryptography and Network Security	$3-0-0$	3	E
CS451	Slective 3	$3-0-0$	3	F
CS431	Compinar \& Project Preliminary	$0-1-4$	2	S
Tosign Lab	$0-0-3$	1	T	

Total Credits = 22
Hours: 27
Cumulative Credits= 162

Elective 3:-

1. CS461 Computational Geometry
2. CS463 Digital Image Processing
3. CS465 Bio Informatics
4. CS467 Machine Learning
5. CS469 Computational complexity

BRANCH: Computer Science \& Engineering

SEMESTER - 8

Course Code	Course Name	L-T-P	Credits	Exam Slot
CS402	Data Mining and Ware Housing	$3-0-0$	3	A
CS404	Embedded Systems	$3-0-0$	3	B
	Elective 4	$3-0-0$	3	C
	Elective 5 (Non Departmental)	$3-0-0$	3	D
CS492	Project		6	S

Elective 4:-

1. CS462 Fuzzy Set Theory and Applications
2. CS464 Artificial Intelligence
3. CS466 Data Science
4. CS468 Cloud Computing
5. CS472 Principles of Information Security

ELECTIVE 5 (NON DEPARTMENTAL ELECTIVE COURSES)

(Note:- If a student has studied or chosen the elective course given within the brackets then the corresponding ND elective cannot be chosen)

1. AO 482
2. AE482
3. AE484
4. AU486
5. BM482
6. BM484
7. BT461
8. BT362
9. CH 482
10. CH 484
11. CE482
12. CE484
13. CE486
14. CE488
15. CE494
16. EE482
17. EE484
18. EE486
19. EE488
20. EE494
21. EC482
22. FT482
23. FT484

FLIGHT AGAIST GRAVITY
INDUSTRIAL INSTRUMENTATION
INSTRUMENTATION SYSTEM DESIGN
NOISE, VIBRATION AND HARSHNESS
BIOMEDICAL INSTRUMENTATION
MEDICAL IMAGING \& IMAGE PROCESSING TECHNIQUES DESIGN OF BIOLOGICAL WASTE WATER SYSTEMS SUSTAINABLE ENERGY PROCESSES

PROCESS UTILITIES AND PIPE LINE DESIGN
FUEL CELL TECHNOLOGY
ENVIRONMENTAL IMPACT ASSESSMENT
APPLIED EARTH SYSTEMS
GEO INFORMATICS FOR INFRASTRUCTURE MANAGEMENT
DISASTER MANAGEMENT
ENVIRONMENT HEALTH AND SAFETY
ENERGY MANAGEMENT AND AUDITING
CONTROL SYSTEMS
SOFT COMPUTING (CS 361 SOFT COMPUTING)
INDUSTRIAL AUTOMATION
INSTRUMENTATION SYSTEMS
BIOMEDICAL ENGINEERING
FOOD PROCESS ENGINEERING
FOOD STORAGE ENGINEERING

FOOD ADDITIVES AND FLAVOURING

FINANCIAL MANAGEMENT

INTRODUCTION TO BUSINESS ANALYTICS

DESIGN AND ANALYSIS OF EXPERIMENTS
TOTAL QUALITY MANAGEMENT
BIOMEDICAL SIGNAL PROCESSING
INFORMATION STORAGE MANAGEMENT

APPLIED LINEAR ALGEBRA

OPERATIONS RESEARCH (CS 365 OPTIMISATION TECHNIQUES)

ADVANCED NUMERICAL COMPUTATIONS

FINITE ELEMENT ANALYSIS
ENERGY CONSERVATION AND MANAGEMENT

OPTIMIZATION TECHNIQUES (CS 365 OPTIMISATION TECHNIQUES)
PRODUCT DEVELOPMENT AND DESIGN

INDUSTRIAL PSYCHOLOGY \& ORGANIZATIONAL BEHAVIOUR

INDUSTRIAL SAFETY

MECHATRONICS

RESPONSIBLE ENGINEERING

DREDGERS AND HARBOUR CRAFTS PROFESSIONAL ETHICS

